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Low-frequency vibrations of helical structures in protein molecules
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A physically intuitive and mathematically easily handled formula is presented for
calculating the low-frequency vibrations of helical structures in protein molecules.
a-Chymotrypsin is taken as an example, and the calculated result shows precise
agreement with observations of the low-frequency Raman spectra. As reflected in the
formula, this kind of low frequency is very sensitive to the conformation of a
biomacromolecule, and can therefore serve as a vehicle to investigate the mechanism of
action of a biomacromolecule from the viewpoint of dynamics. On this basis a feasible
experiment is suggested by which one can examine the relationship between a presumed
mode of low-frequency vibration in a biomacromolecule and its activity.

Among the component elements of protein mole-
cules, the a-helix occupies a prominent position. This
is because: (1) the regularity of a-helices makes them
the only feature amenable to theoretical analysis; (2)
the helical structure can have more influence on the
stability and organization of a protein than any other
individual structure; (3) as much as 80% of a
structure can be helical, and only seven proteins are
known that have no helix whatsoever (Richardson,
1981); (4) the flexibility or elasticity, one of the most
significant characters of biomacromolecules (Kosh-
land, 1958; Chou & Chen, 1977), is to a con-
siderable degree related to their a-helical component
(e.g. the a-keratin structure). In fact, the a-helix is
regarded as the classic element of protein structure
(Richardson, 1981).

Recently, there have been a number of experi-
mental reports and theoretical analyses concerning
the low-frequency motions in biomacromolecules.
For instance, Brown et al. (1972) observed that
low-frequency Raman bands (lower than 50cm-1)
exist in certain proteins, and these vibrations
appeared to be sensitive to the conformation of a
protein. Chou & Chen (1977) pointed out that the
association of some biomacromolecules would con-
comitantly excite low-frequency phonons, otherwise
some perplexing thermodynamic phenomena could
not be explained self-consistently. Chou et al. (1981)
further discussed the relationship between the co-
operativity of an oligomeric protein and the effects
of creating and annihilating low-frequency phonons,
and described a physical picture concerning
the microscopic mechanism of co-operative effects
in biomacromolecules. Karplus & McCammon
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(1979) found low-frequency fluctuations from a
molecular-dynamics simulation of the bovine pan-
creatic trypsin inhibitor at the atomic level on a
picosecond time scale. Sobell et al. (1979, 1982)
deduced that low-frequency (acoustic) phonons can
play an important role in DNA 'breathing' and drug
intercalation. Zhou (1981) further investigated the
low-frequency vibrational energy of a ring-like DNA
and described some related biophysical phenomena.
Careri et al. (1975) and Englander (1980), from
another viewpoint, discussed the relationship be-
tween the hydrogen-exchange properties and this
kind of internal motions in proteins and nucleic
acids.
Now that it is accepted that low-frequency

vibrations do exist in biomacromolecules and their
functions have been widely discussed, a question is
naturally raised: how do we calculate or predict this
kind of low-frequency motions from a known mole-
cular structure? In principle, the normal mode
calculation method developed by Wilson (1939),
Itoh & Shimanouchi (1970) and Fanconi et al.
(1971) could serve such a purpose, but in practice
this is computationally impossible, owing to lack of
molecular symmetry and limitations on computer
size and speed. To circumvent these difficulties,
Fanconi & Peticolas (1971), following the pro-
cedure of normal mode calculations, suggested a
highly simplified model, in which the a-helix con-
sisted of only two masses per repeat unit, to compute
the low-frequency motions. Because of the extreme
complexity of biomacromolecules, it is advan-
tageous and instructive to try to find some other
route by which to approach this subject. Further-
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more, it would be more useful for most molecular
biologists if a physically more intuitive model and a
mathematically more-easily handled formula could
be supplied for calculating the low-frequency
motions in biomacromolecules. The present study
was initiated in an attempt to explore the ways of
attaining such a goal. Realizing the prominent
features cited above for the a-helical element of
proteins, as a first step, let us consider the low-
frequency motions of a-helices in protein molecules.

It is reasonable and instructive to liken an a-helix
to a spring whose mass, however, is not negligible,
namely a spring with distributed mass. On such an
assumption, let us discuss the fundamental fre-
quency (lowest frequency) of a spring system as
illustrated in Fig. 1. Suppose 0 is the reference point
of the vibration system. The two sides of this point
will always move in opposite directions. Such a point
actually divides the spring L into two parts, L1 and
L2, whose force constants are assumed to be k, and
k2 respectively. According to the relation given in the
Appendix, we have:

Continuity model
Recognizing the extreme complexity and inherent

flexibility of biomacromolecules, rather than the
discrete model suitable for the normal mode cal-
culation method, I prefer to adopt a continuity
model for consideration of the internal low-frequency
motions in biomacromolecules. When discussing
the high-frequency vibrations of a molecule, which
refer to very small relative displacements and very
strong molecular forces between neighbouring in-
dividual atoms, one has to resort to the discrete
model. But for the low-frequency motions in a bio-
macromolecule, which involve much bigger effective
masses and much weaker force- constants (Chou &
Chen, 1977), and whose modes can be compared
with an 'accordion-like' motion (Brown et al., 1972),
it is not only more convenient and intuitive but also
physically rational to adopt the continuity model. In
doing so, we will of course lose the information re-
garding the high-frequency motions in a biomacro-
molecule. Nevertheless, this is worthwhile, since the
low-frequency motions in a biomacromolecule seem
to be much more significant than the high-frequency
motions (Careri et al., 1975; Chou & Chen, 1977;
Englander, 1980; Chou et al., 1981; Sobell et al.,
1982).

l/k = l/k1+ 1/k2 (1)
where k is the force constant of the spring L. If al
and a2 are the maximum stretch amounts of the
springs L1 and L2 respectively, along the x-axis (Fig.
1), then according to the property of an even spring
we obviously have:

(2)
with:

L1+L2= L, al + a2 = a (3)
where a is the maximum amount of stretch of the
spring L.
On the other hand, according to the force

equilibrium of the system, we have:

Klal = K2A2 (4)
where K, and K2 are the force constants of the two
mass-negligible springs linked to the two ends of the
spring L, as shown in Fig. 1.
From eqns. (1)-(4) it follows that:

Li=a,L, L2=a2L

a1= aa, a2= a2a

k, = k/al, k2 = k/a2 J

(5)

Fig. 1. Vibration system in which a mass-distributed spring is linked to two other mass-negligible springs whose force
constants are K1 and K2 respectively

The point 0 is a reference point of the vibration system. The two parts of the system from this point move always in
opposite directions.
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where:

a1 = K2/(K1 + K2), a2 = K1/(Kl +K2) (6)

The displacements of any points on L1 and L2 at
any time can be described by

x
u1(x,t) = -L a, sin co * t (-L1< x <0) 1

l, ({7A
x

u2(x,t) =- -a2. sin ct
L2

respectively, where co is the round frequency.
Suppose p is the mass per unit length of the mass-
distributed spring; then the maximum kinetic energy
of an element pAx of the spring L1, a distance x,
from the point 0, is:

max. (AT,')=
pAx (du1\ 2 pAx /xi 2

*max. or,-a1v (8)
2 \dt 2 \Li /

The total maximum kinetic energy ofthe spring L1 is
thus:

max. T=

liMAx-O [:max. (AT1) a2w2 LI2dX(9)
[ i 2 LI2 f°

- pL1c02a,2/6
Similarily, the total maximum kinetic energy of the
spring L2 is:

max. T2 = pL2CO2a22/6 (10)

On the other hand, the total maximum potential
energy of the whole spring system is:

max. U = (kI + K1)a12/2 + (k2 + K2)022/2 (11)

According to energy conservation, i.e.:

max. T, + max. T2= max. U

we have:

p(LIa12 + L2a22)cO2/3 = (ki + Kd)al2

Substituting eqn. (5) into the above, we obtain:

_ v co 1 k+K*
V=-==- = - 3*IL13c 27r 27rc (a13+a23)pL/3

(13)

where v is the fundamental frequency, Tv the wave
number, c the speed of light in vacuum and:

K* = K1K2/(K,+K2) (14)

Note that, if one end of the spring L is linked by a
mass-negligible spring in the way illustrated in Fig.
2, then, instead of a stretching force constant, in eqn.
(14) K2 should be substituted by a corresponding
bending force constant.

Stretching force constant of an a-helix

In this section, let us discuss the approach of
calculating the stretching force constant of an
a-helix. Obviously, for an a-helix in an 'accordion-
like' vibration, its force constant is essentially related
to the constituent hydrogen bonds. As is well known,
the normal a-helix has 3.6 residues per turn, with a
hydrogen bond between the CO group of residue n
and the NH group of residue n + 4 (Pauling et al.,
1951), as illustrated in Fig. 3. Now, the problem is
how to find the relation between the force constant
of the whole a-helix and those of the constituent
hydrogen bonds formed in such a mode.

For such a purpose, it would be helpful to
compare an a-helix with a cylinder, then imagine
that its flank is cut off along a straight line parallel to
the helix axis, and is then flattened as shown in Fig.
4. As is well known, the hydrogen bonds in an
a-helix are not precisely parallel to the helix axis, but
there is a deviation angle, say 9, between them.
Suppose the stretching and bending force constants
of a hydrogen bond are ks and kB respectively. Then
the force constant for such a hydrogen bond
stretching along the helix axis should be:

k*= V(ks . coso)2+ (kB * sin 0)2 (15)
+ (k2 + K2)a22 (12) According to the relation given in the Appendix, the

Fig. 2. Vibration system in which one end of the mass-distributed spring L is linked to a mass-negligible spring in the
same way as in Fig. 1, but the other end is linked to a mass-neglibible spring in a mutualperpendicular mode
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resultant force constant k for the spring system
shown in Fig. 4 can thus be expressed as:

~~~~~~1
1 1 1 1 1

4k* 4k* 3k* 4k* 3k*

(16)

Following such a method, for any a-helix, we can
always derive the approximate expression of its force
constant in terms of the force constants of the
individual hydrogen bonds, e.g. for an a-helix with
eleven amino acid residues the corresponding force
constant k is:

1 12
k = =-k*k

1 1 7
4k* 3k*

(17)

Fig. 3. Illustration ofan a-helix
0, Peptide 0 atom; *, peptide N atom; ,
hydrogen bond.

i

Note that the number of the hydrogen bonds in an
a-helix is normally n-4, where n is the number of the
amino acid residues in the a-helix.

Example and discussion

According to a report presented by Brown et al.
(1972), low-frequency Raman spectra were obtained

I

Fig. 4. Illustration obtained by cutting andflattening theflank ofthe a-helix in Fig. 3
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from samples of a-chymotrypsin that had been
prepared in several ways. A peak at about 29cm-1
was found for all samples except the one that had
been denatured with sodium dodecyl sulphate. They
further pointed out that this kind of vibration
'appears to be sensitive to the conformation of the
protein' and 'is of considerable interest even though
the exact assignment of the motion is not possible at
present'.
Now, let us try to reveal the physical mechanism

of the low-frequency vibration appearing in a-
chymotrypsin. a-Chymotrypsin consists of 245
residues. A view of its complete polypeptide chain is
outlined in Fig. 5, where residues 57, 102 and 195
are the components of the active site. The fl-barrel 1,
formed by six adjacent anti-parallel chains along the

sequence from residue 29 to 112, appears at the
upper left, and the f-barrel 2, also formed by six
anti-parallel chains between residues 133 to 230, is
at the lower right. The C-terminal a-helix (residues
235-245) forms a tail on the second barrel and
makes hydrophobic contacts with both barrels, and
the short contiguous helix (residues 230-235) is
almost inside the molecule. Their axes make an angle
of about 400. The only hydrogen bond between the
C-terminal helix and the remainder of the molecule is
that made by the terminal carboxy group with
Lys- 107.

For the following reasons, the whole a-chymo-
trypsin molecule can be treated as a vibration system
as illustrated in Fig. 2: (1) the C-terminal a-helix is
on the enzyme surface; (2) although one end of the

Fig. 5. View ofthe a-chymotrypsin molecule
The polypeptide chain is represented by a ribbon folded at each a-carbon atom, and the part thereof with helical
structure is specially marked in black. The C-terminal a-helix (residues 235-245) is on the enzyme surface, and the
short contiguous helix (residues 230-235) is almost buried inside the molecule. Their axes (indicated by -*-.)
make an angle of about 400. a-Barrel 1 (residues 29-122) appears at the upper left of the Figure (in front of the
C-terminal helix), and #-barrel 2 (residues 133-230) is at the lower right. It looks as if that the C-terminal helix forms
a tail on the second cylinder (barrel) and makes hydrophobic contacts with both cylinders (fl-barrel 1 and f-barrel 2).
The only hydrogen bond between C-terminal helix and the remainder of the molecule is that made by the terminal
carboxyl group with Lys-107 (illustrated by ------), holding the C-terminal helix more firmly to the enzyme surface.
Residues 57, 102, and 195 are the components of the active site. Disulphide linkage are indicated by hatched bars.
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C-terminal helix is linked to a short contiguous helix,
the latter is buried inside the molecule, and therefore
this end is actually linked by a covalent bond to an
object whose mass is much bigger than that of the
C-terminal helix; (3) the other end of the helix is
fixed by a salt bridge to Lys-107, the only hydrogen
bond between the C-terminal helix and the remainder
of the molecule, and such a hydrogen bond is almost

(Itoh & Shimanouchi, 1970), and therefore eqns. (6)
and (14) can be reduced to:

a1=0, a2= 1 (20)

and

K = kB = 0.015 x 105dyn/cm (21)

respectively.
Substituting eqns. (17)-(21) into eqn. (13), we

obtain:

(22)
123x(0.117+0.015) x 105x 6.02x1023

1 / 7
2x x 3 x 1010 1242

3
= 29.7 cm-'

perpendicular to the C-terminal helix axis; (4) both
the covalent bond and the hydrogen bond at the two
ends of the C-terminal helix can be regarded as
mass-negligible springs.
The amino acid sequence of the C-terminal helix is

(Birktoft & Blow, 1972):
Val-Asn-Trp-Val-Gln-Gln-Thr-Leu-Ala-Ala-Asn

whose mass can be easily calculated by adding the
masses of all the residues together; the sum comes
out at 1242 a.m.u. (atomic mass units). To an extent
of fair approximation, we can suppose that p, the
mass per unit length of the helix, is even. We thus
have:

1242p.L = 1242 a.m.u. = g (18)
N

where L is the length of the helix and N is the
Avogardro constant.
The stretching force constant of an a-helix can be

calculated by means of the method presented in the
preceding section. For a helix with eleven residues,
its stretching force constant has already given as in
eqn. (17). The stretching force constant, ks, of the
hydrogen bond is 0.130 x 105dyn/cm, and its
bending force constant kB is 0.0 15 x 105dyn/cm
(Itoh & Shimanouchi, 1970). [Note that the bending
point in our case is at the end of the hydrogen bond,
rather than the middle of the bond as considered by
Itoh & Shimanouchi (1970). So the force constant of
the former should be half of the latter.] The deviation
angle 9 of the hydrogen bonds from the helix axis is
about 26°. Then, according to eqn. (15), we have

k* = V/ (0.130cos 260)2+ (0.015 sin 260)2 x 105
= 0.117 x 105 dyn/cm (19)

As is well known, the force constant of a covalent
bond is much bigger than that of a hydrogen bond

which is exactly the same as the result observed by
Brown et al. (1972).

It should be pointed out -that in the above
calculation the 'frictional' interactions of the side
chains on the C-terminal helix with the rest of the
protein were ignored. However, according to the
classical analysis for a simple vibration system, such
an approximate treatment is warranted if the
'frictional coefficient' due to this kind of interaction
is much smaller than the product of the mass of the
oscillator and its natural frequency. And here this
condition would most probably hold, because the
C-terminal helix is situated on the enzyme surface.
Besides, as is well known, an oscillator with
frequency v will excite the phonons with energy of
hv. Since phonons are bosons (Chou & Chen, 1977),
under thermal equilibrium, the mean number of
phonons thus excited is, according to Bose-Einstein
statistics, given by:

1
< n > = ehv/kRT- 1 (23)

where kB is the Boltzmann constant. On the other
hand, under general temperature, for phonons with
low frequencies (-30cm-1), we obviously have
hv<kBT. Consequently, the average vibration
energy of the oscillator is:

hv
<E> = <n>hv= ehvkBT TkBT (24)

This indicates that the C-terminal helix undergoing
such a low-frequency motion possesses the same
magnitude of energy as that excited by thermal
movement, and hence the loss of its energy due to the
'friction' of its side chains with the rest of the protein
can be easily compensated through Brownian
collisions with the solvent molecules around the
enzyme molecule.
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Besides, from eqn. (11), in terms of eqns. (5), (6)
and (14), as well as the energy conservation
principle, we have the amplitude given by:

/ 2 <E> BT2kBT
k+K* hv4k3T k+K (25)

When T= 300K, substituting eqns. (17), (19) and
(21) into eqn. (25), we obtain ao0.02nm (0.2A),
which is in the same order of magnitude as the
protein structural fluctuations obtained through the
molecular-dynamics simulation by Karplus &
McCammon (1979).

Native conformation and activating low frequency

When the a-chymotrypsin was denatured with
sodium dodecyl sulphate, the low-frequency peak at
29 cm-', which is closely related to the micro-
environment of the C-terminal helix as well as its
conformation as illustrated in the aforementioned
calculation, will of course vanish, as a result of a
dramatic change on the secondary and tertiary
structure of the protein. Instead, 'rather intense
Raman scattering throughout the region of 20-
150cm-1 is observed on the denatured material, but
it is broad and structureless' (Brown et al., 1972).
This apparently reflects the increase of the back-
ground noise and the decrease in order of the protein
conformation.
From this example, we can see how the activity of

the enzyme as well as its conformation are remark-
ably related to some characteristic low frequency. Of
course, with such a change in protein conformation,
all the other portions of the corresponding mole-
cular spectra will change as well. Nevertheless,
considering the exceptional biological functions of
low-frequency motions in biomacromolecules
(Careri et al., 1975; Chou & Chen, 1977; Englan-
der, 1980; Chou et al., 1981; Sobel et al., 1982), it is
instructive to single out this kind of characteristic
low frequency, and term it the 'activating low
frequency' (Chou et al., 1981). The introduction of
such a concept will no doubt be useful for further

investigation into the action mechanisms of bio-
macromolecules from the viewpoint of dynamics.

According to the above calculation and dis-
cussion, it is intriguing to devise an experiment as
follows. Cut off the C-terminal helix, the 'tail' of
a-chymotrypsin, by some chemical method, and
investigate what happens in both its activity and
low-frequency spectrum. Through such an approach,
the idea of activating low-frequency phonons and the
presumed vibration mode can be inspected.

Valuable discussions with Professor H. M. Sobell and
Dr. D. Timms are gratefully acknowledged.
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APPENDIX

Consider the force constant of the spring system
shown in Appendix Fig. 1. On application of a unit
force at its right end, each constituent spring will

k, k2

Fig. 1. Spring system formed by a series connection of
two individual springs

stretch by an amount l/k1 and 1/k2, and the total
displacement of the end becomes:

1 1
AL=2+- (A-1)

k, k2
By definition, the resultant force constant for the
system should be:

1 1
k= 1 (A-2)

k, k2
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Generally speaking, for a system consisting of n
springs in series connection, the resultant force
constant k can be written as:

(A-3)k=1
1 1 1

k1 k2 k

where kI, kI2 ..., k. are the force constants of the n
individual springs respectively.

However, if a spring system consists of n identical
springs in parallel connection, as illustrated in
Appendix Fig. 2, a similar derivation will result in:

k= n .ko

ko

ko
A AAAA

.1 k

Fig. 2. Spring system formed by a parallel connection of
n identical springs

(A-4)

From the above we see that there is actually a
crosswise corresponding relation between the for-
mulae for calculating the resultant spring force

constant and those for calculating the resultant
resistance as far as the series connection and parallel
connection are concerned.
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